References

References

  • Cox, D., Barbosa, A., Alam, M., Amini, M., Kameshwar, S., Park, H., and Sanderson, D. (2022). Seaside Testbed Data Inventory for Infrastructure, Population, and Earthquake-Tsunami Hazard. DesignSafe-CI. https://doi.org/10.17603/ds2-sp99-xv89

  • Datseris, G., Vahdati, A., and DuBois, T. (2022). Agents.jl: a performant and feature-full agent-based modeling software of minimal code complexity. Simulation. https://doi.org/10.1177/00375497211068820

  • Filatova, T., Parker, D., and van der Veen, A. (2009). Agent-based urban land markets: Agent’s pricing behavior, land prices, and urban land use change. Journal of Artificial Societies and Social Simulation, 12(13). http://jasss.soc.surrey.ac.uk/12/1/3.html

  • Filatova, T., Voinov, A., and van der Veen, A. (2011). Land market mechanisms for preservation of space for coastal ecosystems: An agent-based analysis. Environmental Modelling and Software, 26, 179-190. https://doi.org/10.1016/j.envsoft.2010.08.001

  • Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., …, and DeAngelis, D. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198, 115-126. https://doi.org/10.1016/j.ecolmodel.2006.04.023

  • Kameshwar, S., Cox, D., Barbosa, A., Farokhnia, K., Park, H., Alam, M., and van de Lindt, J. (2019) Probabilistic decision-support framework for community resilience: incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network. Reliability Engineering and System Safety, 191. https://doi.org/10.1016/j.ress.2019.106568

  • Park, H., Cox, D., Alam, M., and Barbosa, A. (2017). Probabilistic seismic and tsunami hazard analysis conditioned on a megathrust rupture of the Cascadia Subduction Zone. Frontiers in Built Environment, 3(32). https://doi.org/10.3389/fbuil.2017.00032

  • Park, H., Alam, M., Cox, D., Barbosa, A., and van de Lindt, J. (2019). Probabilistic seismic and tsunami damage analysis (PSTDA) of the Cascadia Subduction Zone applied to Seaside, Oregon. International Journal of Disaster Risk Reduction, 35. https://doi.org/10.1016/j.ijdrr.2019.101076

  • Rosenheim, N., Guidotti, R., Gardoni, P., and Peacock, W. (2019) Integration of detailed household and housing unit characteristic data with critical infrastructure for post-hazard resilience modeling. Sustainable and Resilient Infrastructure, (6). https://doi.org/10.1080/23789689.2019.1681821

  • Sanderson, D., Kameshwar, S., Rosenheim, N., and Cox, D. (2021). Deaggregation of multi- hazard damages, losses, risks, and connectivity: An application to the joint seismic-tsunami hazard at Seaside, Oregon. Natural Hazards, 109(2), 1821-1847. https://doi.org/10.1007/s11069-021-04900-9

  • van de Lindt, J., Ellingwood, B., McAllister, T., Gardoni, P., Cox, D., Peacock, W., Cutler, H., Dillard, M., Lee, J., Peek, L., & Mitrani-Reiser, J. (2018). Modeling community resilience: Update on the center for risk-based community resilience planning and the computational environment IN-CORE. 17th United States-Japan-New Zealand Workshop on the Improvement of Structural Engineering and Resilience (ATC-15-16), Queenstown, New Zealand (Accessed May 10, 2022). https://www.nist.gov/publications/modeling-community-resilience-update-center-risk-based-community-resilience-planning